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Small angle neutron scattering (SANS) measurements are made at the NIST
Center for Neutron Research in Gaithersburg, Maryland. Because NIST is a user
facility, the data are nicely output by the experiment, but a ’black box’ element
exists as a result. I believe it is important to connect the fundamentals of neutron
scattering with the data output by the user facility. While there are many useful
sources to learn about SANS, I have tried to compile all of the most important
information in this document. Most of this work is derived through the work of
Squires, Pynn, and Hammouda [1, 2, 3]. An alternate version of this document can
be found in my thesis, and I am grateful for the help of Boualem Hammouda and
Claire McIlroy.

1 Scattering from a Single Nucleus

To understand how a real material scatters neutrons, the scattering from an indi-
vidual nucleus must be addressed. Consider a nucleus at the origin that acts like a
point-particle. Incident neutrons traveling with wavevector ~k0 = (0, 0, k) and wave-

function ψ = eikz spherically scatter off the nucleus with scattered wavevector ~k′

and wavefunction

ψs = − b
r
ei

~k′·~r, (1)

where ~r is the location of the observed wave with respect to the origin and b is
the scattering length. The negative sign in Equation 1 is arbitrary but chosen so
that b > 0 is repulsive. While the premise of scattering is a change in momentum
(~k0 6= ~k′), I will only discuss elastic scattering (|~k0| = |~k′| = k). Additionally, I will
only focus on isotropic scattering, so Equation 1 is rewritten as

ψs = − b
r
eikr. (2)

1



2 Scattering Length

As can be seen in Equation 2, b has units of length, though it defines the neutron-
nucleus interaction. For x-ray scattering, b ∝ Z where Z is the atomic number; b
is more complicated in neutron scattering. In general, b is a complex number where
Im b is related to neutron absorption by a nucleus. Some elements like cadmium are
strong absorbers of neutrons because Im b for these nuclei are significant. For most
elements, particularly the elements found in proteins, Re(b) � Im(b), so I consider
b = Re(b) in the following sections.

Neutrons scatter from nuclei that have an apparent size defined by the differential
cross section

dσ

dΩ
≡ Number of neutrons scattered per second into area dS

ΦdΩ
(3)

where Φ is the incident flux and dΩ is a differential solid angle. With neutrons
traveling at speed v, the number of neutrons scattered through a surface dS per
second is

vdS|ψs|2 = vdS
b2

r2
= vb2dΩ, (4)

and since the flux of incident neutrons

Φ = v|ψ|2 = v, (5)

the differential cross section becomes

dσ

dΩ
= b2. (6)

Therefore, the total scattering cross section for a nucleus is

σtot = 4πb2. (7)

The nucleus appears, to the neutron, to be an object with total scattering cross
section of σtot. σtot varies randomly with Z and even amongst isotopes [Figure 1]. b
is a consequence of nuclear interactions and cannot be predicted by current theories
of nuclear forces. Therefore, b must be measured experimentally for each isotope.

3 Origin of Coherent and Incoherent Scattering

In an assembly of N nuclei, where the ith nucleus is at position ~Ri with scattering
length bi, the incident wave with wavevector ~k0 is expressed as

ψ = ei
~k0·~Ri (8)
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Figure 1:  Neutrons are scattered from nuclei while x-rays are scattered from electrons. 
Scattering lengths for a few elements are compared. Negative neutron scattering lengths are 
represented by dark circles. 
 
A few disadvantages of neutron scattering follow.  
 
-- Neutron sources are very expensive to build and to maintain.  It costs millions of US 
dollars annually to operate a nuclear research reactor and it costs that much in electrical bills 
alone to run a spallation neutron source. High cost (billions of dollars) was a major factor in 
the cancellation of the Advanced Neutron Source project in the mid 1990s.  
 
-- Neutron sources are characterized by relatively low fluxes compared to x-ray sources 
(synchrotrons) and have limited use in investigations of rapid time dependent processes. 
 
-- Relatively large amounts of samples are needed: typically 1 mm-thickness and 1 cm 
diameter samples are needed for SANS measurements. This is a difficulty when using 
expensive deuterated samples or precious (hard to make) biology specimens. 
 
 
2. TYPES OF NEUTRON SCATTERING 
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Figure 1: X-rays and neutron interactions with nuclei reprinted from Hammouda [3].
Solid symbols are for nuclei with negative scattering cross sections.

and the scattered wave with wavevector ~k′ becomes

ψs(~r) =
N∑
i

ei
~k0·~Ri

[
−bi
|~r − ~Ri|

ei
~k′·(~r−~Ri)

]
. (9)

Note that Equation 9 reduces to Equation 2 when N = 1 and ~Ri = (0, 0, 0).

Define the scattering vector ~q as the momentum transfer ~q = ~k0− ~k′ and measure
the wave at distances larger than inter-atomic distances (~r � ~Ri). In the simplest
scenario, all nuclei are identical with the same average scattering length b̄. However,
variations of nuclei positions or spin states with time cause fluctuations δbi around
b̄ that are uncorrelated with fluctuations δbj. Therefore, bi = b̄ + δbi. The total
scattering cross section for an assembly of point particles, using Equations 3 & 9,
becomes

dσtot
dΩ

=

〈
b̄2

N∑
i

N∑
j

e−i~q·(
~Rj−~Ri) +N

〈
δb2
〉〉

=
dσcoh
dΩ

(~q) +
dσinc
dΩ

(10)
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where σcoh and σinc are the coherent and incoherent scattering cross sections respec-
tively. Coherent scattering depends on ~q and originates from scattering of different
nuclei at the same time, creating an interference pattern from scattered waves. Inco-
herent scattering is caused by scattering from individual scatterers at different times
that adds independently. As a result, the total scattering cross section

σtot = σcoh + σinc. (11)

For the remainder of this section, I will exclusively discuss σcoh because only σcoh
contains structural information, and I rename σ = σcoh for convenience.

4 One Finite Sized Particle as an Assembly of

Point Particles

Real objects can not always be considered point-particles. However, finite sized par-
ticles with volume VP can be approximated by an arrangement of nuclei. Redefining
bi = b̄, the coherent scattering cross section for an assembly of identical point parti-
cles becomes

dσ

dΩ
(~q) =

〈∣∣∣∣∣
N∑
i

bie
i~q·~Ri

∣∣∣∣∣
2〉

. (12)

Extending the sum over nuclei into an integral over all space ~r inside of the particle,
the scattering cross section becomes

dσ

dΩ
(~q) =

〈∣∣∣∣∣ 1

Vp

∫
d~r b(~r)ei~q·~r

N∑
i

δ(~r − ~Ri)

∣∣∣∣∣
2〉

. (13)

Instead of scattering from point nuclei at ~r = ~Ri, the scattering length density

ρ(~r) =
b(~r)

Vp
(14)

is defined. Additionally, the number density of scatterers

n(~r) =
N∑
i

δ(~r − ~Ri), (15)

where 〈n(~r)〉 = n/VP , is equivalent to

n(~r) = n̄+ ∆n(~r) (16)
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with a spatially fluctuating density ∆n(~r) about an average density n̄.
Equation 13 can then be rewritten as

dσ

dΩ
(~q) =

〈∣∣∣∣∫ d~rρ(~r)ei~q·~r (n̄+ ∆n(~r))

∣∣∣∣2
〉
. (17)

Approximating ρ(~r) = ρ inside the particle and separating the terms in the integral
gives

dσ

dΩ
(~q) =

〈∣∣∣∣n̄ρ ∫ d~rei~q·~r + ρ

∫
d~rei~q·~r∆n(~r)

∣∣∣∣2
〉
. (18)

The first integral only contributes when q = 0 and is not measured in a scattering
experiment. The second integral is the Fourier transform of the density fluctuations
in real space. Therefore, Equation 18 becomes

dσ

dΩ
(~q) =

〈
|ρ∆VPn(~q)|2

〉
. (19)

Note that the scattering cross section only depends on ρ, VP , and the density fluc-
tuations in momentum space.

5 Origin of Contrast Factor

In the case of a general two-phase system where the ith component has volume Vi
(total volume V = V1 + V2), scattering length density ρi, and density fluctuations
∆ni(~q), the ~q 6= 0 scattering in Equation 18 is rewritten as

dσ

dΩ
(~q) =

〈∣∣∣∣ρ1 ∫
1

∆n1(~r)e
i~q·~r1 + ρ2

∫
2

∆n2(~r)e
i~q·~r2
∣∣∣∣2
〉
, (20)

where
∫
i

is the integral over all of Vi. Given that ∆ni(~r) = ∆ni(−~r) and that the
incompressibility assumption requires ∆n1(~r) = −∆n2(~r),

dσ

dΩ
(~q) = (∆ρ)2V 2

1 〈∆n1(~q)∆n1(~q)〉 . (21)

The contrast factor ∆ρ = (ρ1 − ρ2) in Equation 21 is an extremely important and
powerful feature of SANS; a careful choice of ∆ρ greatly simplifies data interpreta-
tion.
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Figure 3: Various contrast conditions.  
 
 
6. THE PHASE PROBLEM 
 
The so-called “phase problem” affects all scattering methods because measurements are 
performed in reciprocal (Fourier) space. In order to explain the issue, let us consider the 
simple case of a scattering medium (think solvent) of scattering length density Ug (think 
“grey” color), and two set of structures, one comprised of “white” spheres of scattering 
length density Uw and one comprised of “black” spheres of scattering length density Ub. 
Assume that the white and black spheres are identical except for their scattering length 
densities (i.e., “color” as appearing to neutrons) that are opposite. Also assume that the white 
spheres are hydrogenated (Uw < Ug) and the black spheres are deuterated (Ub > Ug). 
Microscopy is sensitive to the following differences Uw-Ug <0 and Ub-Ug >0 whereas 
scattering methods are sensitive to the following “contrast factors” (Uw-Ug)2 > 0 and (Ub-Ug)2 
>0. Both are positive and therefore appear the same. In order to defeat the phase problem, a 
second sample is necessary whereby the scattering length density of the solvent matches that 
of the black spheres for example (Ug = Ub). In this case the black spheres will be invisible and 
the white spheres will be distinct.  

 Finite contrast  Zero contrast 

 Multiple contrasts  Contrast match 

Figure 2: Changes in solvent scattering length density change contrast reprinted
from Hammouda [3].

5.1 Contrast Matching

One of the advantages of neutron scattering is the ability to adjust the contrast factor
∆ρ between the scatterers and the solvent. Since dσ/dΩ(~q) ∝ ∆ρ2, the intensity
of scattering is maximized by adjusting the solvent. Solvent adjustments are most
frequently accomplished by isotope changes, since isotope changes dramatically affect
the scattering length of the nucleus [Figure 1]. In aqueous solvents, some percentage
of the water (H2O) is replaced by deuterium oxide (D2O) to maximize ∆ρ2.

Alternatively, the solvent can also be adjusted to selectively scatter from a par-
ticular part of the system instead of maximizing ∆ρ2. The most straightforward
contrast variation involves mixing H2O and D2O to create a binary solvent with a
desired average scattering length density ρmix. As schematized in Figure 2, a system
with constituents A and B with ρA and ρB will scatter from both A and B. However,
scattering will come from only A if ρmix = ρB.

6 Assembly of Finite Sized Particles

I have shown for the previous scenarios that dσ/dΩ(~q) =
〈
|f(~q)|2

〉
, where f(~q) is a

scattering amplitude. In the case of a point particle at ~Ri, f(~q) = −bei~q·~Ri , whereas
f(~q) = ∆ρVP∆n(~q)ei~q·~ui for a finite sized particle centered at ~ui. Therefore, the
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scattering cross section for an assembly of N identical finite sized particles is

dσ

dΩ
(~q) =

〈∣∣∣∣∣
N∑
i

∆ρVP∆n(~q)ei~q·~ui

∣∣∣∣∣
2〉

. (22)

Expanding this out, I get

dσ

dΩ
(~q) = (∆ρ)2V 2

P

〈
N∑
i

N∑
j

∆n(~q)∆n(~q)ei~q·(~ui−~uj)

〉

= N(∆ρ)2V 2
P 〈∆n(~q)∆n(~q)〉

(
1 +

1

N

〈
N∑
i

N∑
j 6=i

ei~q·(~ui−~uj)

〉)
.

(23)

Defining the single particle form factor

P (~q) ≡ 〈∆n(~q)∆n(~q)〉 (24)

and the structure factor

S(~q) ≡

(
1 +

1

N

〈
N∑
i

N∑
j 6=i

ei~q·(~ui−~uj)

〉)
, (25)

Equation 23 becomes
dσ

dΩ
(~q) = N(∆ρ)2V 2

PP (~q)S(~q). (26)

7 Macroscopic Scattering Cross Section

The macroscopic scattering cross section is defined as

dΣ

dΩ
(~q) ≡ 1

V

dσ

dΩ
(~q), (27)

where V is the volume of the sample; dΣ/dΩ(~q) is an intensive property of the
sample. Because of instrumental conditions, the actual measured scattering of the
sample varies. However, the absolute scattering intensity I(~q) is calculated knowing
the experimental parameters:

I(~q) = [φA`T∆Ωεt]
dΣ

dΩ
(~q) (28)

where φ is the neutron flux, A is the area of the sample, ` is the pathlength of the
sample, T is the sample transmittance, ∆Ω is pixel size in units of solid angle, ε is
the efficiency of the detector, and t is the counting time for the experiment. With
I(~q) known, a quantitative comparison can be made between measurements.
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8 Scattering in Experiments

In a SANS experiment, a monochromatic neutron beam is directed through a col-
limated aperture and incident upon the sample. The sample scatters the neutrons
over some angle onto a 2-dimensional detector as schematized in Figure 3; in the
case of isotropic scattering, the detector is azimuthally averaged to determine I(q).
The scattering vector q is calculated by

q =
4π

λ
sin

(
θ

2

)
, (29)

where λ and θ are the neutron wavelength and scattering angle respectively.
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selector. Collimation is preformed through the use of two apertures (a source aperture and a 
sample aperture) placed far (meters) apart. Scattering is performed from either liquid or solid 
samples. Detection is performed using a neutron area detector inside an evacuated scattering 
vessel. The large collimation and scattering distances make SANS instruments very large 
(typically 30 m long) compared to other scattering instruments.  
 

 
 
Figure 2: This figure represents the schematics of the SANS technique. It is not to scale with 
vertical sizes are in centimeters whereas horizontal distances are in meters.  
 
The SANS technique has been an effective characterization method in many area of research 
including Polymers, Complex Fluids, Biology, and Materials Science. Other areas such as 
magnetism also benefited from SANS. SANS instruments have been essential components 
for any neutron scattering facility for almost three decades. They provide the main 
justification for the growth and prosperity and are highly oversubscribed. New sample 
environments have given new momentum to the technique. These include in-situ shear cells, 
flow cells and rheometers, pressure cells, electromagnets and superconducting magnets, 
vapor pressure cells, humidity cells, in-situ reaction cells, etc. New advances in electronics, 
data handling methods and computers have made SANS a sophisticated “user friendly” 
characterization method for the non-experts and for “routine” characterization as well as 
cutting edge research.  
 
 
4. THE MEASURED MACROSCOPIC SCATTERING CROSS SECTION 
 
Consider a simple scattering system consisting of globular (think spherical) inhomogeneities 
in a matrix (think solvent). If this system is assumed to be incompressible, the SANS 

Incident Beam 

Area Detector 

Scattered  
Beam Sample Q 

Source 
Aperture 

Sample 
Aperture 

Monochromatic 
Neutron Beam 

Monochromation Collimation Scattering Detection 

Figure 3: Schematic of SANS setup: monochromatic neutrons are focused onto a
sample and scatter onto a 2-D detector reprinted from Hammouda [3]. If scattering
is isotropic, 2-D scattering can be averaged onto a single curve.

9 Data Analysis

Once I(q) is determined, data analysis begins. There are many different ways to
analyze SANS data, but most of these methods require some a priori structural
information or assumptions. However, the Guinier and Porod analyses techniques
are the most basic because they require minimal assumptions. In the following
subsections, I go through the derivations of each method.
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9.1 Guinier Analysis

One of the simplest analysis types is an expansion of P (~q) using Equations 18 & 24.
Define ~s = ~r − ~r′ = (sx, sy, sz), and set ~r′ at the origin. The integrals can then be
replaced by

∫
d~s: the distribution of distances ~s. For small ~q · ~s

P (~q) ≈
∫
d~s+ i

∫
d~s (~q · ~s)− 1

2

∫
d~s (~q · ~s)2 (30)

where
∫
d~s (~q · ~s) = 0 from symmetry.

The quadratic term is expanded∫
d~s(~q · ~s)2 =

∫
d~s(qxsx + qysy + qzsz)

2

=

∫
d~s(q2xs

2
x + q2ys

2
y + q2zs

2
z)

(31)

from the same symmetry argument above. Because (q2xs
2
x + q2ys

2
y + q2zs

2
z) = q2s2/3, I

can rewrite

F (~q) ≈
∫
d~s−

1
6

∫
d~s (q2s2)

∫
d~s′∫

d~s′′

= V0

(
1− q2R2

G

3

)
≈ V0e

−q2R2
G/3

(32)

to order O(qRG)2 where

RG =
1

2

∫
d~s s2∫
d~s

. (33)

9.2 Porod Analysis

In the case of isotropic scattering, the scattering function can be rewritten in terms
of the pair correlation function g(s) as

I(q) ∝
∫
d~s

sin(qs)

qs
g(s), (34)

where 〈
e−i~q·~s

〉
=
sin(qs)

qs
(35)
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Figure 7: Assortment of Porod law behaviors for different shape objects.  
 
 
5. THE ZIMM PLOT 
 

Another well known plot is the Zimm plot (1/I vs Q
2
) which found wide use in light 

scattering from dilute polymer solutions where extrapolation to zero Q and zero 
concentration yields the molecular weight, the radius of gyration and the second virial 
coefficient. The Zimm plot is also useful in polymer blends (in the single-phase region) 
where the slope is proportional to the correlation length, which is proportional to the Flory-
Huggins interaction parameter (incompressible RPA model) to be described later.  
 
Assume a Lorentzian form for the Q-dependence of the scattering intensity:  
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Figure 4: Structures associated with particular Porod slopes reprinted from Ham-
mouda [3].

is the Debye approximation [4]. In a mass fractal, mass scales with sD, where D is
the mass fractal dimension. As a result, the pair correlation function g(s) ∝ sD−3 [5].
Using Equation 34,

I(q) ∝ 1

qD
(36)

for the scattering of a mass fractal. D ranges between 0 and 3.
Systems that have surface fractals with dimension Ds have mass that scales with

s2−Ds , resulting in g(s) ∝ s3−Ds [6]. Therefore,

I(q) ∝ 1

q6−Ds
(37)

for the scattering of a surface fractal. Values of Ds range between 3 for a rough
surface and 2 for a smooth surface. Note that Ds = 2 recovers the Porod scaling of
I(q) ∝ 1/q4. Therefore, a microscopic picture of the structure inside a material can
be determined by measuring the fractal dimension [Figure 4].
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